Speaker Identification Using Discriminative Learning of Large Margin GMM
نویسندگان
چکیده
Gaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decades. They are generally trained using the generative criterion of maximum likelihood estimation. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we present a new version of this algorithm which has the major advantage of being computationally highly efficient, thus well suited to handle large scale databases. We evaluate our fast algorithm in a Symmetrical Factor Analysis compensation scheme. We carry out a full NIST speaker identification task using NIST-SRE’2006 data. The results show that our system outperforms the traditional discriminative approach of SVM-GMM supervectors. A 3.5% speaker identification rate improvement is achieved.
منابع مشابه
Large Margin GMM for discriminative speaker verification
Gaussian mixture models (GMM), trained using the generative criterion of maximum likelihood estimation, have been the most popular approach in speaker recognition during the last decades. This approach is also widely used in many other classification tasks and applications. Generative learning in not however the optimal way to address classification problems. In this paper we first present a ne...
متن کاملLarge margin Gaussian mixture models for speaker identification
Gaussian mixture models (GMM) have been widely and successfully used in speaker recognition during the last decade. However, they are generally trained using the generative criterion of maximum likelihood estimation. In this paper, we propose a simple and efficient discriminative approach to learn GMM with a large margin criterion to solve the classification problem. Our approach is based on a ...
متن کاملDiscriminative adaptation for speaker verification
Speaker verification is a binary classification task to determine whether a claimed speaker uttered a phrase. Current approaches to speaker verification tasks typically involve adapting a general speaker Universal Background Model (UBM), normally a Gaussian Mixture Model (GMM), to model a particular speaker. Verification is then performed by comparing the likelihoods from the speaker model to t...
متن کاملA discriminative performance metric for GMM-UBM speaker identification
Gaussian mixture modeling with universal background model (GMM-UBM) is a widely used method for speaker identification, where the GMM model is used to characterize a specific speaker’s voice. The estimation of model parameters is generally performed based on the maximum likelihood (ML) or maximum a posteriori (MAP) criteria. In this way, interspeaker information that discriminates between diffe...
متن کاملIn-set/out-of-set speaker identification based on discriminative speech frame selection
In this paper, we propose a novel discriminative speech frame selection (DSFS) scheme for the problem of in-set/out-of-set speaker identification, which seeks to decrease the similarity between speaker models and background model (or antispeaker model), and increase the accuracy of speaker identification. The working scheme of DSFS consists of two steps: speech frame analysis and discriminative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011